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We study high frequency Nikkei stock index series and investigate what certain wavelet
transforms suggest in terms of volatility features underlying the observed returns process.
Several wavelet transforms are applied for exploratory data analysis. One of the scopes is
to use wavelets as a pre-processing smoothing tool so to de-noise the data; we believe that
this procedure may help in identifying, estimating and predicting the latent volatility.
Evidence is shown on how a non-parametric statistical procedure such as wavelets may
be useful for improving the generalization power of GARCH models when applied to
de-noised returns.
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1. Introduction

Volatility models have characterized the field of financial time series in the last two
decades; they work through equations for the conditional variance together with the
conditional mean and aim to improve the quality of predictions for stock returns,
rates and many other derivatives. The idea is to better exploit the available infor-
mation, since this comes with the data under some particular form of dependency,
precisely the one in the conditional variance. At the same time, the goal of provid-
ing effective models for financial returns generating stochastic processes has found
an original solution with the autoregressive conditional heterescedasticity (ARCH)
models [8] and their generalized representation (GARCH) [2]; many other related
characterizations for this kind of stochastic processes followed afterwards.

Since then, new mathematical and statistical tools have become available for
applications in financial time series [14]. From an empirical viewpoint there are
also several new perspectives; for instance, in line with the direction of studies [12]
which aim to see financial markets as a place where people act according to different
time horizons for what concerns their investment decisions, one may try to interpret
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the observed returns as a signal that can be examined at different resolution levels,
which reflect the investors’ time horizons. We also consider the fact that in general
a signal might seem stationary at first observation, but at a more detailed level of
analysis discontinuities can appear so that previously undetected non-stationarity
behaviour could now show up. This aspect might be relevant in financial time series
analysis, where wavelets could be useful for dealing with the task of exploring latent
data features; their inherent multiresolution property may help in explaining the
time/space and frequency varying components in a signal. It is important to find
new flexible tools for modelling non-stationary stochastic processes, especially when
it is important to emphasize the contribution that local features of the observed
signals can offer in order to find information relevant for forecasting purposes.

In Sec. 2 we briefly introduce wavelets. In Sec. 3 we describe the data set that
we use for the analysis, together with the wavelet families we adopted. In Sec. 4
we present some results of the exploratory analysis performed on the observed
time series of daily Nikkei index returns. In Sec. 5 we look at various wavelet
decomposition techniques and show their reconstruction power. Data de-noising is
the topic of discussion in Sec. 6, and an interesting example of application of a
wavelet estimator is described in Sec. 7. In Sec. 8 we report the conclusions.

2. Wavelets and their Properties: A Brief Review

Financial time series data sets are temporal series inherently perturbed by noise;
stock market prices can be affected by so many factors and by so many different
institutions and individuals that no theory can suggest a safe way of modelling data
to reflect price movements. Therefore for financial time series there exists no tool
for extracting the true signal and thus separating it from the noise in the observed
values; of course one can hope to build a model which is able to approximate the
sought for signal, but how well this happens through the part of price variation that
the designed model manages to explain is simply not known because of the presence
of noise and because of the same limitations and contraints imposed by the model.

We think that the ability to separate the true underlying volatility-carrier signal
from the pure noise might potentially be improved if we could look deeply into the
data, i.e. by analyzing the signal at different resolution levels. One goal is to find the
best strategy for decomposing the signal through a wavelet expansion, with basis
functions able to capture the main characteristics of the time series and suitable to
be interpreted. The multi-resolution view of a signal is the strength of the wavelet
transform; with a simple prototype function we can perform a fine spatial/temporal-
and-frequency analysis through a contracted (high frequency) and a dilated (low
frequency) version of the same function respectively. The wavelet transform is useful
from this last perspective, more than other techniques, since it gives a resolution
which is sharper in time(space)/frequency at respectively high/low frequencies and
therefore offers more flexibility from its localization power.

Consider a general function f which we want to expand in terms of some basis
functions with certain time-frequency localization properties; given the scaling
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function (or father wavelet) ¢ such that its dilates and translates constitute
orthonormal bases for all the V; subspaces that are scaled versions of the subspace
Vo to which ¢ belongs, we can form a Multiresolution Approximation (MRA)
of L?(R) once some properties are satisfied (see [6, 11] for technical definitions and
details).

With a DWT (i.e. a Discrete Wavelet Transform) we are basically con-
structing a map f — w from the signal domain to the wavelet coefficient domain,
or in other words we apply the transformation w = W f. Consider now a mother
wavelet ¢ and its derived terms indicated with ;5 (j is the dilation or level index
and k is the translation or shift index), which are obtained as:

Wik(z) = 239 (2x — k) (1)
For certain 1’s, the ¢;; form an orthonormal basis for functions in some particular
spaces. A general wavelet decomposition is described by f(z) = ij firin(z),
where f;; give the information about the function f near time point 2k and near
frequency proportional to 27. The ¢ and 9 pair of functions generate the series
of approximating spaces V; addressed above. At a more specific level of analysis,
the DWT algorithm is able to produce coefficients for fine scales, thus capturing
high frequency information, and for coarse scales, thus capturing low frequency
information. Therefore, a sequence of smoothed data and a sequence of details
not previously accounted for that give information at finer resolution levels, are
obtained. We come up with a representation like:

F@) =D condion(@) + D D dikthin(a), )

k >0 k
where ¢jo is a scaling function with the corresponding coarse scale coefficients
cjo,r and d; i are the detail (fine scale) coefficients; the first term of the right hand
side of (2) is the projection of f onto the coarse approximating space Vjo while
the second term represents the detail. We can define ¢;r = 237 | ¢;x(z;) and
djk = 237" ¥jk(zs). A clear advantage of an orthogonal wavelet expansion is
the resulting independence among coefficients; this mapping from the signal to
the wavelet coefficients domains allows one to perform statistical inference in the
projected domain.

3. The Data Set and the Wavelet Family for the Analysis

The data set we analyze is the daily Nikkei index, with observations ranging from
May 17, 1949 to 31 July 1996, for a total amount of 13505 data. We construct the se-
ries of returns in the usual fashion, i.e. r; = In(p;/p;—1)) X 100.2 The wavelet family

2There are clearly few big outliers due to well-known shocks occurred worldwide. We do not
eliminate them from the sample at hand, for the reasons that first it is always an hard task with
time series but particularly because we want to leave their treatment to some de-noising procedure
able to discriminate between pure signal and disturbance. We observed that by using a robust-
cleaner wavelet smoother, we ended up losing too much structure in the sample and thus we avoid
pre-processing the data in this way.
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chosen among the many available is the symmlet; for this data set symmlets and
coiflets, another family with similar features, behave similarly. Symmlets-8 have
a compact support, are orthogonal, nearly symmetric and with good smoothness
properties [6]; therefore they are well localized in time, thus delivering good spa-
tial adaptivity, and where a smooth signal is found they can be represented with
relatively few coefficients, i.e. satisfy the principle of sparsity of representation.

With wavelets we basically adopt a flexible degree of smoothing according to
the resolution level. Thus, by increasing the resolution level j we decrease smooth-
ing and vice versa when we decrease j, just as in the case of using a variable
bandwidth for each time location in a kernel smoother. Other considerations have
to be done with regard to the choice of working with decimated wavelets instead
of (ST) stationary ones, i.e. non-decimated. The main consequence is the number
of coefficients retained in the analysis at each resolution level investigated; in the
first case every time we switch from one level to another we have half the number
of coefficients available compared to the number used in the previous higher resolu-
tion level, while for stationary wavelets this decimation does not occur. The reason
behind the importance of using all the coefficients in some applications, comes from
the fact that a more precise alignment with data features can be found at every
resolution level. The price to pay is that many more coefficients remain in the
analysis.

Models for time series or econometric analysis should be built according to the
principle of parsimony, which means to use as bare a structure (i.e. parameters)
as possible. In wavelets the same aspect is brought in by the concept of sparsity,
which means to be able to approximate a function belonging to a certain space by
projecting it onto a sequence of sub-spaces at different resolution levels and using
relatively few coefficients in the function representation. Thus, the advantage of a
sparse representation is obtained when many components of the coefficient vector w
can be considered negligible for reconstructive power purposes, and therefore elim-
inated. However, two problems are encountered with financial time series models:
(a) the non-parametric nature of the wavelet transform does not offer the usual in-
terpretation for the estimated coefficients as expected by financial econometricians
(but by no means should this aspect prevent them from being studied) (b) care
must be taken in analyzing the coefficients selected due to the highly noisy nature
of these data; one thus needs reliable procedures to get rid of coefficients considered
not useful for the signal reconstruction.

4. Exploratory Analysis of Nikkei Index Data

The notation we adopt here follows the one used in [3]. Thus, with s;x and
djr we indicate the smooth and detail coefficients that appear in the sig-
nal decomposition. Generally speaking, with decimated wavelets and the sam-
ple size n divisible by 2/ we have 5 coefficients dj i, i.e. the finest scale, 2

4
do (the next finest scale) and so forth until we find 57 djk (the coarsest
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Table 1. Energy percentages by resolution levels.

resolution levels d1 d2 d3

coiflet-6 0.435  0.282 0.138
symmlet-6 0.459 0.262 0.138
symmlet-8 0.455  0.257  0.142

Table 2. Energy percentages by number of coefficients.

n. coefficients 1 136 271 406 876 1351 2026 3377
coiflet-6 0.014 0.262 0.359 0.427 0.523 0.668 0.756 0.860
symmlet-6 0.016 0.262 0.357 0.423 0519 0.662 0.750  0.856
symmlet-8 0.016 0.268 0.363 0.430 0.527 0.665 0.751 0.856
scale), for a total amount of n = 2 4+ 2 + ... + & coefficients.® The detail

coefficients embed information about finer and finer resolution levels, thus of-
fering the true advantage of wavelets compared to other smoothing techniques.

We can represent the wavelet coeflicients as w = [sy,dy,...,d1], where s; =
[3.1,1,3J,2,...,SJ,;nj]',...,...,...,dl = [d1,1,d1,2,.--,d1,2]". The original signal can

I

be decomposed according to Sj x(t) = 8;,£05,k(t), Djk(t) = dj k¥ k(t), so that we
have S;(t) = >, Sjx(t) and D;(t) = >, D;x(t), and the the signal can be rep-
resented as f(t) = Sy(t) + Dy(t) + Dy-1(t) + --- + D1(¢). This is an MRA of the
signal and the goal now is to operate a selective Multi-resolution Decomposition of
it by extracting the most informative components.

Table 1 gives the percentages of energy distributed in the three most relevant
resolution levels for decimated wavelets; Table 2 gives instead the percentages of
energy distributed according to groups of coeflicients ordered by decreasing size.
The total energy (see [5]) is given by E = Y o, ff = ES + Zjﬂ E¢, where

Ey =% YiL, 85, and Bf = %21?;1d?,k» j=1....J.

One can see that the choice between one or another family, at least according to a
visual inspection and a comparison of energy percentages, doesn’t represent an issue
indeed, provided that a certain smoothness is allowed (here the smoothness index
is the number attached to the wavelet name). We chose to work with symmlet-8
(Fig. 1) and when we reconstruct the original signal with the Inverse DWT function,
we may notice how the reconstruction improves by going from level ds to d; (Fig. 2).

The energy enclosed by coeflicients in the remaining resolution levels does not

turn out to be so relevant, also at a visual inspection, even if they still enclose

bThe number of coefficients at the various levels is not exact if n is not divisible by 27, but only
approximate, but still the total number of coefficients is n, even if not exactly %"J— at scale 27.
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Fig. 1. (a) symmlet-8 transform. (b) coiflet-6 transform. (c) original signal. (d) signal recon-
structed from symmlet-8.

residual energy. With ST wavelets, where decimation does not occur, n coeflicients
appear at every resolution level. We found the following percentages of energy
distributed among levels for a ST symmlet-8: d; = 0.109; dy = 0.133; d3 = 0,133;
dq =0.137; d5 = 0.132; dg = 0.169; sg = 0.188.

At first it seems that such a homogeneous distribution of energy does not help
too much in separating the components relevant for the reconstruction. But we
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Fig. 2. Reconstruction from d3 ((a),(b)), d2 ((c),(d)) and d1 levels.

also have to consider the result in the light of the nature of the signal at hand,
i.e. a financial time series, where we expect to find out short-, mid- and long-term
information related to the various market horizons of different agents operating in
the market. From Fig. 3 we can notice a better resolution power at almost every
level, but the redundancy of coeflicients that by default comes with ST wavelets is
also relevant from the perspective of selectively reconstructing the signal (i.e. by
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Fig. 3. Multiscale decomposition with decimated (left) and ST symmlet-8.

levels of resolution) when compared to the decimated wavelets shown before.° The
relevant numbers of coefficients present in the decimated symmlet-8 are 6752 in dj,

3376 in dp and 1688 in ds; for the stationary wavelets the corresponding values are
of course the same at every level.

©The length of the lines is relative to the magnitude of the coefficients for each level according to
a particular scale and the coefficients are spaced so to observe their localization properties, which
helps in explaining where in the function significant changes occur.
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A final observation is made: structure mixed with noise to different degrees is
discovered in different resolution levels in both cases, i.e. with decimated or not
decimated wavelets, thus suggesting the possibility that latent volatility features
characterizing different scales may reflect different market horizons for operators.

5. Other Wavelet Decomposition Techniques
5.1. Wavelet packets

There are other procedures which are based on the wavelet transform and are
useful for our analysis. Wavelet packets, for instance, allow for the presence of an
oscillation parameter to consider periodic behaviour in the series; since we can
combine wavelet functions so as to build tables or dictionaries, we obtain a
better domain of wavelets, compared to the basic one, from which to select a basis
that represents the signal. We can still select an orthogonal transform from the
so-called Wavelet Packet Table (WPT), something perfectly equivalent to the
DWT employed before. But we can do more indeed; we can try to choose the best
basis according to the procedures suggested by [5]. In general, when we extract
components from a WPT we obtain, following [3], a decomposition like:

Wio(t) =D wj0kWiok(t) ®3)
k

where the W components play the same role of the D’s before. We can select entire
resolution levels (see Fig. 4) in order to test their individual reconstructing power
and we can design special WPT from which to search the best basis representing
the signal through a specific selection of sets of coefficients. A crystal is a set of
wavelet coefficients, which for the WPT is indexed by the level j and the oscillation
b: Wi = (Wj,6,1, Wi,p,2, - - - s Wbmy2i )

The level 1 crystals in Fig. 4 have scale 2 and correspond to the DWT coefficients
previously indicated by s; and dj; therefore, it brings signal information at the
highest resolution level and it is ordered by increasing oscillation index. The
decomposition is thus obtained, as from (3). The same applies for the level 2 crystals
and decomposition.

5.2. Cosine Packects

With cosine packets we use instead cosine functions localized in time that form
smooth basis functions. The Discrete Cosine Transform (DCT) is the dis-
cretized version of the Fourier Cosine Transform of a signal, i.e. DCT, =

\/gsk E:.:Ol fiv1 cos(@%’ﬂ), where k = 0,1,...,n—1 and sy is the scaling factor
equal to 1, if £ = 0 or k = n, or to 1/4/2, if k is different from the previous values.
An orthogonal transformation that maps a signal from the time to the frequency do-
main is thus obtained. For the DCT, depending on the taper functions we choose,
we can design cosine packets which improve the time localization power and thus
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Fig. 4. Reconstructed signal from wl and w2 crystals (a) and from W1 and W2 signals.

capture local features in the data. One simply creates smooth basis functions by
letting cosine functions go to 0 in a selected interval.

We have computed experiments with the Cosine Packet Table (CPT), and
one was the application of the best basis algorithm of [5], i.e. a global optimiza-
tion procedure for finding the transform that best matches the signal features. It
is applied by searching for the minimum of the cost function Zj, o E(Wj,0), which
is like searching for a minimum entropy transform. We have noted that in terms
of reconstructing the signal we have pretty much the same power as we had before
with the DWT. Thus, we analyzed another algorithm, presented in the following
sub-section, which is more effective in dealing with non-stationary signals and cap-
turing local features.
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Table 3. Number of largest coefficients per type of transform and level with associated percentage
of energy according to the MP algorithm decomposition.

levels 0 1 2 3 5

wp-transf.  19(0.799)  13(0.152)  8(0.038) - -
cp-transf. 18(0.731) 7(0.092) - 4(0.039)  11(0.106)
dwt-transf.  23(0.713)  14(0.221)  8(0.053) - -~

5.3. Matching pursuit basis selection

The Matching Pursuit (MP) algorithm of [9] decomposes a signal as a sum of atomic
waveforms belonging to dictionaries, like WPT or CPT, and other function families
too. The MP decomposition is not a global optimization procedure and does not
obtain an orthogonal decomposition. It is a greedy algorithm which iteratively, at
successive steps, decomposes the residual term left from a projection of the signal
onto the elements of a selected dictionary in the direction of that atom which best
matches the signal features. In summary, the algorithm approximates a function
as f(t) = Y i heH.,,(t) + res;(t) by computing at each H,, the quantity p,; =
J resi_1(t)H,(t)dt and by finding ; = argmin,er ||res;—1(t) — py,iHy(t)||. Then
the updated residual is given by res;(t) = res;_;(t) — h;H,,(t) and the procedure is
repeated until i < n.

The results reported in Table 3 show the better localization at the high
frequencies for MP on WPT compared to CPT and DWT. The reported values
correspond to the largest coefficients found at each level after the decomposition,
with the energy percentages appearing in parentheses. For the WPT the MP finds
that 0.799 is the percentage of energy explained by the 19 largest coefficients,
which is a better performance compared to the MP applied on CPT, which ex-
plains less, 0.731, with almost the same number of coefficients, 18, and compared
to the equivalent DWT (obtained as a special case with a linearly independent
wavelet packet transform), which needs 23 largest coefficients to explain less energy
percentage, 0.713. These results are obtained for the best resolution available, by
choosing coarser levels CPT spreads more information than WPT and DWT needs
comparatively more coefficients, and thus is less sparse as a representation than the
one obtained when MP runs on WPT.

In any case, results indicate that there is no great change in performance when
switching from one transform to another, the reason being that the signal at hand
is less characterized by periodicities than it is instead by time non-uniformities
observed in the series. This fact has an high relevance when one tries to exploit
the power of redundant but richer classes of functions, like WPT or CPT, like it
has been shown in [4] with intradaily data. Here the two function approximations
for WPT and CPT are given by f(t) = Y. . WjokWij,ok(t) + resi(t) and f(t) =
Zjok cj,o,kC-,O,k(t) + res; (t)

jok
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6. Denoising with Wavelets

The wavelet shrinkage principle of [7] applies a thresholded de-noising procedure
to the data by shrinking wavelets coefficients to zero so that a limited number of
them will be considered for reconstructing the signal. The fact that the noise is re-
moved from the signal to obtain a better reconstruction might be crucial for financial
time series in order to capture the underlying volatility structure. From the perspec-
tive of statistical inference, we are clearly employing a non-parametric procedure
given that it does not rely specifically on assumptions about the underlying nature
of the function f(¢) and it adopts a criterion similar to a locally adaptive band-
width. Thus, denoising with wavelets is useful for spatially heterogeneous signals
like financial time series.
The following algorithm implements the wavelet shrinkage principle:

o DWT is applied to the data to make the empirical wavelet smooth and detail
coefficients

o the wavelet coefficients, in particular at the finest scales, are shrunken toward
zero by thresholding

o the inverse DWT is applied to the thresholded coefficients to reconstruct the signal

Figures 5 and 6 show the signal and residuals extracted through de-noising runs
with decimated and undecimated symmlets respectively. One can observe that in
the right upper parts of the two figures box plots of level-by-level wavelet coefficients
are reported and the coefficients within the marked central bands are eliminated
because they are no not different from noise, according to thresholding procedure
we adopted. The signal-to-noise ratio, still on a level-by-level basis, reported in the
right bottom part of the figures, reflects a different number of wavelet coefficients
used at each resolution level with the two different transforms.

The results indicate that decimated and ST wavelets are able to discriminate
between signal and residuals quite clearly and in a different way according to
the resolution level considered. A level-adaptive threshold is chosen for both the
cases because from the experiments done it is the method that allows for a better
signal/noise separation. It works according to the soft shrinkage rule selected as:

de(z) = sign(z)(|z| - ¢) 4)

when |z| > ¢; otherwise §.(z) = 0. The threshold which adapts to each resolution
level is based on the principle of minimizing at each resolution level the Stein Un-
biased Risk Estimator, or SURE, such that the resulting estimator is quoted in the
literature as SureShrink. It takes the following form \; = argmin;>oSURE(d;,t),
with

K K 2
d;
SURE(d;,t) =K —2 E I[ldj.klﬁtoj] + E min [(.ﬁl‘i) ,t2:| (5)
k=1 k=1 J
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and where the shrinkage function depends also on the estimate of the scale of the
noise; we found that performances are pretty much similar when different estimated
scale functions are tried out.

Residual diagnostics? show that the autocorrelation functions and the residuals
quantile plots for detecting deviations from the Gaussian distribution, suggest that
model misspecification is still present; this is a real dilemma with unknown solution,
and there is few things that either parametric or nonparametric statistical inference
can do. However, one can choose to learn more about what is behind the data, like
for instance to look at the volatility structure as we chose to do, since conditional
mean misspecification may not be so unbearable as to prevent a reliable inves-
tigation of it and still allow for consistent conditional variance predictions to be
achieved, as shown by [13].

Reducing the number of wavelet coeffcients is a problem that one has to deal
with when an effort is made to build up a wavelet-based model. With regard to the
de-noising procedures we adopted, there is still an high number of decimated wavelet
coefficients left for recontructing the signal; at the dl level, for instance, signal
coefficients in the various experiments (i.e. with different parameters in SURE)
range from 1720 to 1751, in level d2 from 729 to 1061 and in level d3 from 460 to
822, while for ST wavelets (for one choice of parameters in SURE) the correspondent
values are 4219, 5216 and 5988, with a number equal to n for coarsest scales (the
ones not affected by the shrinkage algorithm because considered less noisy).

This method leads naturally to a selection of coefficients that embed the signal
features of the data at hand, thus allowing for an excellent reconstruction. One
could also select the resolution levels to which the coefficients belong, and try to
pick out the specialized information brought at every scale. Then, one possibility
is to use the information brought by these coefficients as regression coefficients in
a model with a regression matrix composed of wavelet dilations and translations.
It would be even better to allow these coefficients to be dynamically changing, in
the style for instance of state space models, where we could set them into the state
vector subject to recursive estimation by a Kalman Filter type of algorithm. The
framework we have introduced here is in other words open to further refinement
toward the idea of making wavelets more leading to build a model for representing
observed data and related dynamics and thus for approximating signals, rather than
simply pre-processing data, even if in a very informative way.

7. An Application of the SureShrink Estimator Combined with
GARCH Modelling

We build our model with a simple framework, that of a signal + noise model,
i.e. y = ft + €, and apply it to the observed returns: the wavelet transform. In
statistical terms one would say that the given model represents a semi-parametric

d Available from the author.
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regression fit, where the f; signal that we want to detect is assumed to behave as
an ARCH process, i.e. f; = &0y, with oy = v/h; and hy = Y, b, f2;, as in the case
for the ARCH natural generalization, the GARCH process, where lagged volatility
values are included. In this way, we are basically emphasizing two facts: (i) our
true signal component is inherently noisy and (ii) we want to limit the influence
of noise on our data features. The non-parametric regression model derives from
superposing the signal+noise model to a signal with GARCH-type disturbances;
these disturbances will be assumed to follow a Student’s t distribution, for deal-
ing with the leptokurtosis of returns, while the additive noise is instead a general
i.i.d. process. The model can be described as follows:

Yy = fr+ e (6)
fe=4&o¢, with oy =R (7
hy = Z ahy—; + ijf?—j (8)

where €; ~ 1.1.d.(0,02), fi|¥¢—1 ~ i.3.d.(0, k) and & ~ N(0,1), and given the set
of past information ¥;_;.

The semi-parametric form of the model thus depends on the choice of leaving
unknown the conditional mean noise distribution, while selecting a specific para-
metric family for the disturbance affecting the GARCH-type signal.

This model, which we estimate in a sequential, i.e. two-step, fashion, may be
more soundly justified when higher frequency or tick-by-tick data sets are used,
perhaps, since in these contexts financial theory finds the presence of noise at a
microstructural level. Nevertheless, we think it is interesting to analyze daily data
because in this case the measurement error is relevant for the accuracy of predicting
the volatility function. We aim to confirm that by de-noising the data. We got
similar results just as if we had increased the frequency of observation, and thus
could obtain better volatility predictions, confirming what has been shown in other
studies [1]. We do not claim that one gets a better fit without the noise in the
data, simply because the data to which the models apply are different; but we
believe it is a legitimate argument to look at which of the two specified models
turn out to be more informative for our purposes. Thus, we try to let a different
signal-to-noise ratio be our discriminatory measure; this allows us to detect the
part of the noise process affecting the observed data that once removed suggests a
better identification of the latent structure in the volatility process.

The experiments in this section are conducted with the wavelets module written
in S-Plus by Bruce and Gao (1994). Our goal is thus to investigate whether de-
noising the data with wavelets and applying the waveshrink estimator can improve
the ability to detect the latent volatility structure characterizing the observed time
series. We compare model performances for original and transformed time series
and use the best model selected among many others tested. The original series
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is indicated by SERI1, and the other series derived from the application of the
waveshrink algorithm with non-decimated wavelets to the original series, first, and
a normalization procedure after; we indicate the second series by SER4.

Many volatility models have been tested and the one with the best fit was found
to be a GARCH(1,1), while the conditional variance for a GARCH(p,q) process is
given by:

P q
ht =a+ Z aiftz_,- + Z biht—; . (9)
i=1 =1

The conditional mean equation, which in Eq. (6) was indicated as a semi-parametric
regression model, can be further modelled in its term f;; in particular, we allow for
a lag or an equivalent MA(1) term, to account for the influence of lagged residuals,
and for a regressor matrix that includes exogenous variables designed to limit the
inevitable residual misspecification, i.e. holiday and weekend dummies, the series of
index levels, running means computed over 5, 7 and 15 days and the correspondent
running volatilities over 5 and 7 days (all of these variables are selected among
others on the basis of significance tests). The model thus should be written with a
conditional mean equation like this:

y; = const. + Z; +¢; (10)

where, in Z; = aX;+ 3f;, the X matrix includes the exogenous variables described
before and the signal vector includes the error f;_1, i.e. the MA(1) term.

Since the Gaussian GARCH models do not seem to completely capture the de-
gree of leptokurtosis observed in the data, by leaving residuals with a clear evidence
of a heavy tailed conditional distribution, a Student’s t g(z) = c(lT;;)Tz“ where

o3

p(zﬂ) . ~1
is selected; note that z = f;h; *

n(v—2)) 2 (%
&, aﬁxd( tha)b’)c tkfez )degrees of freedom are estimated with the other parameters, say
0, in the model.

A leverage term is also inserted in the conditional variance equation and is
estimated to allow for the consideration of asymmetric effects of positive and neg-
ative returns. This term is therefore to be accounted, together with the GARCH
structure, for measuring the combined effects. With the leverage term included, a
conditional variance equation assumes the following form:

, i.e. the standardized residuals

p q
he=a+ Y aillfemil + %ifemi)® + Y bihui. (11)
i=1

i=1

7.1. Estimation and prediction performance

The selected model was estimated over the two series available by using the S-
Plus GARCH module [10]. We used the entire set of data for estimating the model.
By the prediction error decomposition, the log-likelihood function for a sample
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Table 4. Estimated parameter values for the time series, along with the t statistics (in
parenthesis).

Parameters SER1 SER4
MA(1) —0.017 0.618
(=1.97) (108.48)
B4 —0.945 0.243
(~11.17) (19.54)
B5 1.994 0.493
(30.58) (46.18)
B6 —0.086 0.099
(—1.82) (17.04)
lev 0.118 0.201
(7.64) (4.65)
ARCH 0.053 0.691
(7.13) (22.95)
GARCH-1 0.763 0.212
(7.80) (11.81)
GARCH-2 0.061 0.036
(0.72) (4.33)

Y1,---, Y is given by [;(©) = log L1(©) = Zg;l log f(yi|¥i—1) = —3 Z?:l log hi +
Zg;l log g(-’;{—‘};), where g(-) is the Student’s ¢ distribution described before. The

maximum likelihood estimation procedure gives the following values for the four
series investigated: —14485 (SER1) and 9980 (SERA4).

Our estimation analysis is summarized in Table 4. In short, these results indicate
that the MA (1) coefficient, inserted into the conditional mean equation to take into
account the one-step behind residuals, increases its absolute value by going from
SERI1 to SER4, and becomes significant. The leverage term, i.e. lev, is relatively
small in its absolute value and only modestly significant. Note that the running
means (B4 for 7 days, B5 for 5 days and B6 for 15 days) and volatilities inserted in
the conditional mean equation are computed by run.mean,; = %Z:_n 417t and

TUN.Voly 4 = \/ n—l_—l Zﬁ_n 41(rt — run.meany, 1)2, where r; are the returns.®

The significant MA (1) might indicate misspecification, bringing to the conclu-
sion that profit-taking strategies are easily available to market agents in the long
run. It is reasonable that these profit opportunities wouldn’t stay undetected for
long periods of time, thus explaining the fact that a not significant value would be
more in line with the market efficiency theory. However, recent empirical findings
in market microstructure studies address many possible sources of correlation in

®We report only some of these values in the table, having the excluded variables resulted not
significant across experiments.
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observed returns, and the impact of several factors should be taken into account.
Therefore, it might be that instead of just thinking that de-noising can destroy the
characteristics of the observed data and thus emphasize features unknown before,
but contradicting the proper market behaviour, de-noising might indirectly confirm
the presence of non-efficiency in the market. This condition might not be limited to
the short term, due to the possible presence of regimes which remain hidden when
analysing the original data or the presence of long run dependence, together with
the short run easily uncovered.

We also note that pure ARCH effects show up more clearly when the decimated
and ST waveshrunken estimators are applied to the data; their absolute value in-
creases and they become even more significant. The GARCH coefficients behave
in a different way: the GARCH-2 component, which we included for being able to
capture some more dependency, is small and not significant for SER1, while is only
modestly significant for SER4. For this reason we do not consider its relevance neg-
ligible and include it in our model specification; the GARCH-1 coefficient reduces
its absolute value when computed for SER4, remaining sufficiently significant.

At first sight, we observe that a more precise isolation of the pure ARCH effects
in the structure of volatility can be important in those circumstances when their
presence could be easily questioned, due to particular complex dynamics character-
izing the underlying stochastic processes. Moreover, the fact that past volatilities
become less important with waveshrunken series in determining the current value
of the same variable can suggest that an effective separation of noise and signal
helps for understanding how the recursive effects propagate both temporally and
spatially.f The investigator ignores, of course, a priori what is the best, as far as the
influence of these delayed effects on the most recent observation is concerned, but
it makes sense to consider the fact that even though with autoregressive dynamics
one can hope to predict better, in high volatility market phases the abovementioned
propagation effects would probably prevent the analyst from effectively detecting
the true latent features, due to the dominant role that noise would have under these
circumstances.

Since predicting the structure of volatility is our goal here, we also report plots
of the predictions obtained for the series of volatility values. We have some evidence
that once the noise in the observations is reduced, the forecasted volatility function,
despite the evidence of some diminutive power compared to the squared returns
series, is such that the gap between the two series is sensibly reduced and they
appear more similar in the pattern they follow. Therefore, the de-noised squared
realized returns can be a better indicator to track the variability of the latent
volatility function. We compute the out-of-sample predictions as follows: we first fit
our model to 13490 observations, for every series, and predict one step ahead with
the selected GARCH model, i.e. we make a forecast for the observation at time

fIn this last case via the so-called volatility clusters, which can be detected by the observation of
occasional but temporally persistent bursts of activity in the data.
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¢t = 13491; next we update the sample by using 13491 observed values, re-fit the
model, predict the value at t = 13492, and so forth until we predict at ¢ = 13505. We
end up with a small sample of 15 one step ahead predictions with which we compare
the prediction power of our estimated model on the original and waveshrunken
series. The correspondent plots of realized squared returns vs. volatility forecasts
are reported, together with some diagnostic plots and measures.

One can observe in Fig. 7 that the waveshrunken estimators do a good job
in emphasizing the presence of GARCH effects in the squared de-noised returns.
While the autocorrelation functions of the squared standardized residuals still re-
port evidence of structure left, due to a certain degree of misspecification in the
conditional mean equation, the Ljung-Box test statistic Q computed for the squared
standardized residuals turns out to be 10.49 and 5.53 for respectively SER1 and
SERA4. Therefore the two series reveal that we cannot reject at either 1% or 5%
levels the null hypothesis of white noise residuals, being @ ~ x35|Ho.

We also compared the one-step ahead forecasted volatility with the squared
realized returns (see Fig. 8), and notice a higher variability of the prediction curve
for the waveshrunken series, which follows more closely the pattern of the squared
returns dynamics. This conversely means that squared returns can investigated
more usefully to understand the latent volatility behaviour. In terms of quantita-
tively measuring the prediction performance, we compute the Root Mean Square
Error, ie. RMSE = (A Y1 [yi — %:]%)% = (% ST | €2)%, which gives the values
2.26686 for SER1 and 0.60964 for SERA48.

It thus seems that some latent structure previously hidden has been detected;
one reason for this is that by limiting the influence of our measurement error we
manage to better separate noise and signal structures, hence our squared returns
can be better estimators for the underlying latent volatility. Literature reporting
experiments done with higher frequency data (1] show how increasing the frequency
of observation reduces noise and improves volatility prediction. We obtained similar
results for daily data, directly de-noising them.

Returning to the correlation appearing from the estimates of Table 4, the non-
vanishing MA(1) term seems to only apparently violate the expected picture of a
rapidly decaying autocorrelation function of returns, since by looking at the same
function computed for the squared de-noised series (Fig. 7) one may note that there
is a slow decay instead, thus emphasizing the presence of possible long memory,
which thus should be further investigated before judging definitely the meaning
of the significant moving average coefficient. The autocorrelation function of the
squared standardized estimated residuals leaves the reader with the same impres-
sion, i.e. that something of the structure of both the series is not completely cap-
tured, and only with the de-noised return series is the same idea is clearly conveyed

[Fig. 7(c)].

€In the RMSE formula, T is the number of predictions and the y and § are respectively the squared
realized returns and the GARCH predicted conditional variances.
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Fig. 7. (a) ACF squared SERY]; (b) ACF squared st. residuals from GARCH estimates on SERI;
(c) and (d) show in the same sequence results for SER4.
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(c) and (d) comparison of squared returns and volatility predictions with GARCH applied on
respectively SER1 and SER4.
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8. Conclusions and Future Directions

We studied the impact of Wavelet Multi-resolution analysis on financial time series
and showed that it offers interesting insights for discovering the presence of volatil-
ity structure at various resolution levels. In financial time series it’s possible that
information affects the market at different time horizons, such that its effects on
returns can correspondingly be analyzed at different time scales and frequencies. We
observed that (1) signal structure shows up mostly at very fine scales (2) the number
of wavelet coefficients is big and thus the risk of overfitting is high when modelling
directly with them (3) wavelet packets suggest rich dictionaries of functions from
which a good basis can be selected, via best basis or matching pursuit algorithms
(4) denoising the series via the wavelet shrinkage algorithm allows for a substan-
tial reduction in the number of coefficients, thus suggesting a more selective signal
reconstruction. We show results about modelling with GARCH when the data are
noisy and when they are pre-processed via wavelet transforms. A better volatility
prediction power for one step ahead forecasts arises in the case of de-noised data,
thus indicating that latent volatility features can be better detected. This result is
usually achieved when less measurement noise is allowed through an higher sampling
frequency for the observed signal.
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